翻訳と辞書 |
Legendre–Fenchel transformation : ウィキペディア英語版 | Convex conjugate
In mathematics, convex conjugation is a generalization of the Legendre transformation. It is also known as Legendre–Fenchel transformation or Fenchel transformation (after Adrien-Marie Legendre and Werner Fenchel). == Definition ==
Let be a real normed vector space, and let be the dual space to . Denote the dual pairing by : For a functional : taking values on the extended real number line, the convex conjugate : is defined in terms of the supremum by : or, equivalently, in terms of the infimum by : This definition can be interpreted as an encoding of the convex hull of the function's epigraph in terms of its supporting hyperplanes.〔(【引用サイトリンク】title=Legendre Transform )〕 〔 (【引用サイトリンク】last1= Nielsen ) 〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Convex conjugate」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|